

Research-Group Internship

Understanding the emitted green light of the Thomson Nd:YAG lasers

Philip Geißler

Physics Institute, University of Greifswald

4th of August, 2023

Internship Reasons and Goals

UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

observation ports

3 Nd:YAG lasers Laser beam path

Images of diffusor under $1064 \,\mathrm{nm}$ laser light, with (b) and without (t) $1064 \,\mathrm{nm}$ filter.

Thomson Scattering beampath

The Nd:YAG laser

Nd:YAG schematic

- four level laser, 1064 nm
- polarized output light
- experiment lasers rotate polarization via waveplate
- pulsed with $10\,\mathrm{ns}$ and $1.8\,\mathrm{J}$

Experimental setup for the frequency distribution measurement

- goal: measure spectrum of the emitted green light to gather information about its cause
- · spectrum measurement of scattered light

- tested $1064 \,\mathrm{nm}$ experiment lasers, varying power of green light
- switch to laboratory 1064 nm laser during the experiment campaign no green light
- sanity check of visible light generation from original lasers after campaign easily visible green light

results not reproducible only viable difference: quartz $\lambda/2$ -waveplate

New experimental setup for the frequency distribution measurement

- new hypothesis: generation of green light in waveplate
- spectrum measurement of unscattered light possible
- $1064 \,\mathrm{nm}$ light filtered after waveplate to reduce energy influx

Spectrum Measurements

Frequency distribution measurement of the visible green light

Intro to Waveplates

 $\lambda/2$ – waveplate (positive uniaxial medium)

Intro to Waveplates

phase changes due to 30° rotated waveplates ($\Delta \varphi_{\text{left}} = \pi$, $\Delta \varphi_{\text{right}} = \pi/2$)

Given $\Delta \varphi(L) = \frac{2\pi}{2} = \pi$, and a angle α between the input polarization and the fast axis, the polarization is rotated by 2α .

phase changes due to $\approx 0^{\circ}$ and $\approx 90^{\circ}$ rotated waveplates ($\Delta \varphi = \pi$)

Given $\Delta \varphi(L) = \frac{2\pi}{2} = \pi$, and a angle α between the input polarization and the fast axis, the polarization is rotated by 2α .

First published SHG spectrum

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

34 35 36 37 38 39 40 45 50 55 60 65 70 75 80

VOLUME 7, NUMBER 4

History

Intro to SHG

August 15, 1961

Intro to SHG History

First published SHG spectrum

Microscopic Scale

Polarization in crystals

• \vec{E} field polarizes crystal

•
$$\vec{P} = P_0 + \varepsilon_0 \chi^{(1)} \vec{E} + \mathcal{O}(\vec{E}^2)$$

However

- \vec{P} dependent on unit cell choice $\rightarrow \Delta \vec{P}$ independent
- χ frequency dependent
- $\vec{P} \propto \vec{E}$ only holds for small \vec{E} in isotropic materials

Microscopic Scale

Effect of 1D $\vec{P}(\vec{E})$ nonlinearities

Intro to SHG

Microscopic Scale

$$\begin{split} E(t) &= E_0 \sin(\omega t) & \text{non-pyroelectric (Quartz):} \\ \frac{P(E)}{\varepsilon_0} &= \frac{P_0}{\varepsilon_0} + \chi^{(1)}E + \chi^{(2)}E^2 + \mathcal{O}(E^3) & P(0) = 0 \implies P_0 = 0 \end{split}$$

$$\implies \frac{P(t)}{\varepsilon_0} = \frac{P_0}{\varepsilon_0} + \chi^{(1)} E_0 \sin(\omega t) + \chi^{(2)} E_0^2 \sin^2(\omega t) \\ = \left(\frac{P_0}{\varepsilon_0} + \frac{\chi^{(2)} E_0^2}{2}\right) + \chi^{(1)} E_0 \sin(\omega t) - \frac{\chi^{(2)} E_0^2}{2} \cos(2\omega t)$$

 \implies SHG for 2nd order terms in P(E)

Microscopic Scale

$$\begin{split} E(t) &= E_0 \sin(\omega t) & \text{non-pyroelectric (Quartz):} \\ \frac{P(E)}{\varepsilon_0} &= \frac{P_0}{\varepsilon_0} + \chi^{(1)}E + \chi^{(2)}E^2 + \mathcal{O}(E^3) & P(0) = 0 \implies P_0 = 0 \end{split}$$

$$\sin^{n}(\omega t) = 2^{1-n} \begin{cases} \frac{1}{2} \binom{n}{\frac{n}{2}} + \sum_{k=1}^{\frac{n}{2}} \binom{n}{\frac{n}{2}-k} (-1)^{k} \cos\left(\underline{2k}\omega t\right) & n \text{ even} \\ \frac{n-1}{2} \\ \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{\frac{n-1}{2}-k} (-1)^{k} \sin\left((\underline{2k+1})\omega t\right) & n \text{ odd} \end{cases}$$

Macroscopic Scale

SHG interference at and near phase-matched conditions

$$\Delta k = k_{2\omega} - 2k_{\omega} = \frac{2\omega}{c} (n_{2\omega} - n_{\omega}) = \frac{2\omega}{c} \Delta r$$

Macroscopic Scale

$$I_{2\omega}(l) \propto \left[\frac{\sin(\Delta k \, l/2)}{\Delta k}\right]^2 d_{\text{eff}} w^2 I_{\omega}^2$$
$$\propto \left[\frac{\sin(\Delta n \, l\omega/c)}{\Delta n}\right]^2$$

• minimize Δn

• for
$$\Delta n > 0$$
:
• $\hat{I} \propto \Delta n^{-2}$
• $\lambda_I = \frac{\pi c}{\Delta n \, \omega}$

Index matching concept for KDP and quartz. Quartz not possible: $[n_{o}(\omega), n_{eo}(\omega)] = [1.534, 1.543] < [1.547, 1.556] = [n_{o}(2\omega), n_{eo}(2\omega)]$

Electric Susceptibility Tensors

 $P_0 = 0$ as quartz is non-pyroelectric

Quartz and its PropertiesUNIVERSITÄT GREIFSWALD
Wissen lockt. Seit 1456Electric Susceptibility Tensors
$$P_0 = 0$$
, $\chi^{(1)} \approx 1.5$ $\varepsilon_r^0 \approx \begin{pmatrix} 4.64 \\ 4.64 \\ 4.85 \end{pmatrix}$ $\varepsilon_r^\infty \approx \begin{pmatrix} 2.51 \\ 2.51 \\ 2.55 \end{pmatrix}$ $\Rightarrow \chi^{(1)} = \varepsilon_1 - 1 \approx 3.7$ in the DC region
 ≈ 1.5 in the NIR and VIS region

$$\vec{P}_{\mu}^{(2)}(t) = \varepsilon_0 \iint_{-\infty}^{\infty} \chi_{\mu\alpha\beta}^{(2)\,\text{sum}}(\omega_1,\omega_2) \vec{E}_{\alpha}(\omega_1) \vec{E}_{\beta}(\omega_2) e^{-i(\omega_1+\omega_2)t} \,\mathrm{d}\omega_1 \,\mathrm{d}\omega_2$$

assuming frequency independence of χ for SHG, and monofrequent input EM-waves ($\omega_1 = \omega_2 = \omega$)

$$\vec{P}^{(2)}_{\mu}(2\omega) = \varepsilon_0 d_{\mu\alpha\beta} \vec{E}_{\alpha}(\omega) \vec{E}_{\beta}(\omega)$$

$$d, \chi^{(2)} \in \mathbb{C}^{3 \times 3 \times 3} \qquad \qquad d_{\mu\alpha\beta} \coloneqq \frac{1}{2}\chi^{(2)}_{\mu\alpha\beta}$$

Electric Susceptibility Tensors

$$P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_\alpha \vec{E}_\beta d_{\mu\alpha\beta} = \vec{P}_\mu^{(2)}$$

 $d \in \mathbb{C}^{27}$ in general

Electric Susceptibility Tensors

$$P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_\alpha \vec{E}_\beta d_{\mu\alpha\beta} = \vec{P}_\mu^{(2)}$$

 $d \in \mathbb{C}^{27}$ in general

 \mathbb{C}^{18} including symmetry in α and β

 $\alpha\beta = xx \quad yy \quad zz \quad yz \quad zx \quad xy$ $\mu = x \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \end{pmatrix} = d_{\mu[\alpha\beta]}$

$$(d_{\mu\alpha\beta} = d_{\mu\beta\alpha})$$

$$(d \quad a = d \quad a)$$

Electric Susceptibility Tensors

$$P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_\alpha \vec{E}_\beta d_{\mu\alpha\beta} = \vec{P}_\mu^{(2)}$$

- $d \in \mathbb{C}^{27}$ in general
 - $\mathbb{C}^{18}\,$ including symmetry in α and β
 - \mathbb{R}^{10} Kleinmann's rule for lossless media

 $(d_{\mu\alpha\beta} = d_{\mu\beta\alpha})$ $(d_{\mu\alpha\beta} = d_{\alpha\mu\beta})$

$$\begin{aligned} \alpha\beta &= xx \quad yy \quad zz \quad yz \quad zx \quad xy \\ \mu &= x \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{31} & d_{21} \\ d_{21} & d_{22} & d_{23} & d_{32} & d_{14} & d_{12} \\ d_{31} & d_{32} & d_{33} & d_{23} & d_{13} & d_{14} \end{pmatrix} &= d_{\mu[\alpha\beta]} \end{aligned}$$

Electric Susceptibility Tensors

$$P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_\alpha \vec{E}_\beta d_{\mu\alpha\beta} = \vec{P}_\mu^{(2)}$$

- $d \in \mathbb{C}^{27}$ in general
 - \mathbb{C}^{18} including symmetry in α and β
 - Kleinmann's rule for lossless media \mathbb{R}^{10}
 - \mathbb{R}^2 Neumann's point group principle

 $(d_{\mu\alpha\beta} = d_{\mu\beta\alpha})$ $(d_{\mu\alpha\beta} = d_{\alpha\mu\beta})$ $(d_{\mu\alpha\beta} = (Td)_{\mu\alpha\beta})$

$$\begin{array}{ccccc} \alpha\beta = xx & yy & zz & yz & zx & xy \\ \mu = x \\ y \\ z \end{array} \begin{pmatrix} d_{11} & \overline{d_{11}} & & d_{14} \\ & & & \overline{d_{14}} & \overline{d_{11}} \\ & & & & \overline{d_{14}} \end{array} \end{pmatrix} = d^{(32) \text{ sym.}}_{\mu[\alpha\beta]}$$

Wissen lockt. Seit 1456

Electric Susceptibility Tensors

$$P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_\alpha \vec{E}_\beta d_{\mu\alpha\beta} = \vec{P}_\mu^{(2)}$$

- $d \in \mathbb{C}^{27}$ in general
 - \mathbb{C}^{18} including symmetry in α and β
 - \mathbb{R}^{10} Kleinmann's rule for lossless media
 - \mathbb{R}^2 Neumann's point group principle
 - \mathbb{R}^1 Neumann's principle & Kleinmann's rule

$$\begin{array}{cccccc} \alpha\beta = xx & yy & zz & yz & zx & xy \\ \mu = x \\ y \\ z \end{array} \begin{pmatrix} d_{11} & \overline{d_{11}} & & & \\ & & \overline{d_{11}} \\ & & & \overline{d_{11}} \end{pmatrix} = d^{(32), \text{ no loss}}_{\mu[\alpha\beta]}$$

$$(d_{\mu\alpha\beta} = d_{\mu\beta\alpha})$$
$$(d_{\mu\alpha\beta} = d_{\alpha\mu\beta})$$
$$_{\mu\alpha\beta} = (Td)_{\mu\alpha\beta})$$

$$(d_{\mu\alpha\beta} = d_{\mu\beta})$$
$$(d_{\mu\alpha\beta} = d_{\alpha\mu})$$

$$(a_{\mu\alpha\beta} - a_{\alpha\mu\beta})$$
$$(d_{\mu\alpha\beta} = (Td)_{\mu\alpha\beta})$$

Electric Susceptibility Tensors

 $P_0 = 0, \quad \chi^{(1)} \approx 1.5, \quad \varepsilon_0 \vec{E}_{\alpha} \vec{E}_{\beta} d_{\mu\alpha\beta} = \vec{P}_{\mu}^{(2)}, \quad d_{11} \approx 0.3 \,\mathrm{pm/V}$

- $d \in \mathbb{C}^{27}$ in general
 - \mathbb{C}^{18} including symmetry in α and β
 - \mathbb{R}^{10} Kleinmann's rule for lossless media
 - $\mathbb{R}^2\,$ Neumann's point group principle
 - $\mathbb{R}^1\,$ Neumann's principle & Kleinmann's rule

$$\begin{array}{cccccccc} \alpha\beta = xx & yy & zz & yz & zx & xy \\ \mu = x & \\ y & \\ z & \\ \end{array} \begin{pmatrix} d_{11} & & & \\ & & & \\ & & & \\ \end{array} \begin{pmatrix} d_{11} & & & \\ & & & \\ & & & \\ \end{array} \end{pmatrix} = d^{(32), \text{ no loss}}_{\mu[\alpha\beta]}$$

UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

Quartz and its PropertiesUNIVERSITÄT GREIFSWALD
Wissen lockt. Seit 1456SHG Direction Dependence $d_{11} = -d_{12} = -d_{26} \approx 0.3 \text{ pm/V}$ $\varepsilon_0 \vec{E}_{\alpha} \vec{E}_{\beta} d_{\mu\alpha\beta} = \vec{P}_{\mu}^{(2)}$ $\Rightarrow \frac{\vec{P}(2\omega)}{d_{11}\varepsilon_0} = \frac{1}{d_{11}\varepsilon_0} \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} = \begin{pmatrix} E_x^2 - E_y^2 \\ -2E_x E_y \\ 0 \end{pmatrix} = \begin{pmatrix} \cos 2\theta \\ -\sin 2\theta \\ 0 \end{pmatrix} E^2 = E^2 R_{2\theta} \hat{e}_x$

with \vec{E} rotating in the XY-plane with magnitude E and angle θ to \hat{e}_x Thus, for $E_z = 0$:

SHG Direction Dependence

- laser light along \hat{n} polarized in *XY*-plane and angle $\theta = \angle \hat{e}_x \vec{E}$
- $\implies P_{\perp \hat{n}} = \|\vec{P} \times \hat{n}\| \propto \|\cos 2\theta \cos \theta \sin 2\theta \sin \theta\| = \|\cos 3\theta\|$ • for $\vec{E} \parallel \hat{e}_x$, SHG along \hat{n} is maximized • for $\vec{E} \parallel \hat{e}_y$, SHG along \hat{n} is minimized
 - no phase matching possible, but for our laser, $I(2\omega)/I(\omega) \sim 10^{-7}$ non phase-matched intensity is enough

Effects in our Waveplate

visible SHG at rotation angles $\Delta \alpha \approx 0^\circ$, 30° , 60° and 90° . (inverted)

Effects in our Waveplate

- $\vec{E}_{\rm out}(\omega) \parallel \vec{E}_{\rm in}$, unchanged, horizontally pol.
- $\vec{E}_{\text{out}}(2\omega) \parallel \vec{E}_{\text{in}}$, mostly horizontally pol.
- $\rightarrow~$ Nd:YAG light frequency doubled

- $\vec{E}_{\text{out}}(\omega) \parallel \vec{E}_{\text{in}}$, unchanged, horizontally pol.
- $\vec{E}_{\rm out}(2\omega)\perp\vec{E}_{\rm in},$ mostly vertically pol.
- $\rightarrow\,$ depolarized Nd:YAG light frequency doubled

Nd:YAG Depolarization

Captured Nd:YAG light passing through a polarization filter polarized parallel (left) and perpendicular (right) to the intended laser polarization

The goal of the internship was achieved:

- guartz waveplate is responsible for green light instead of diffusor
- green light is second harmonic (532 nm) of Nd:YAG wavelength
- the theory on SHG and waveplates can explain the observed light and its intensity distribution can be explained by
- ⇒ Possible combined SHG+waveplates for use in laser adjustment
 - improvement in adjustment visibility, with only diffusive elements needed as detector cards
 - non-hazardous adjustment together with filter for fundamental wavelength

References I

J. P. Bachheimer and G. Dolino.

Measurement of the order parameter of α -quartz by second-harmonic generation of light.

Phys. Rev. B, 11:3195–3205, Apr 1975.

R. Boyd.

Nonlinear Optics. Elsevier Science, 2003.

- P. N. Butcher and D. Cotter. *The Elements of Nonlinear Optics.* Cambridge Studies in Modern Optics. Cambridge University Press, 1990.

Dr. Rüdiger Paschotta, rp-photonics.com/yag_lasers.html. Yag lasers, 2021. [Online; accessed 01-August-2023].

References II

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit. Thermal lensing and depolarization in a highly pumped nd:yag laser amplifier. <i>Journal of Physics D: Applied Physics</i> , 26(11):1884, nov 1993.
P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of optical harmonics. <i>Phys. Rev. Lett.</i> , 7:118–119, Aug 1961.
P. A. Franken and J. F. Ward. Optical harmonics and nonlinear phenomena. <i>Rev. Mod. Phys.</i> , 35:23–39, Jan 1963.
X. Gonze, D. C. Allan, and M. P. Teter. Dielectric tensor, effective charges, and phonons in α -quartz by variational density-functional perturbation theory. <i>Phys. Rev. Lett.</i> , 68:3603–3606, Jun 1992.
IEEE.

Standards on piezoelectric crystals, 1949. *Proceedings of the IRE*, 37(12):1378–1395, 1949.

S. Kurimura, M. Harada, K.-i. Muramatsu, M. Ueda, M. Adachi, and T. Yamada. Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching. *Opt. Mater. Express*, 1(7):1367–1375, Nov 2011.

C. Sevik and C. Bulutay.

Theoretical study of the insulating oxides and nitrides: Sio2, geo2, al2o3, si3n4, and ge3n4.

Journal of Materials Science, 42, 06 2007.

S. Shkuratov.

Explosive Ferroelectric Generators: From Physical Principles to Engineering (World Scientific Publishing Co., 2019). World Scientific Publishing Co., 10 2019.

H. Weber.

9. Nichtlineare Optik, pages 899–999. De Gruyter, Berlin, New York, 2004.

Wikimedia Commons,

commons.wikimedia.org/wiki/File:Dielectric_responses.svg. Dielectric responses.svg, 2010. [Online; accessed 01-August-2023].

Wikimedia Commons, commons.wikimedia.org/wiki/File:Waveplate.png. Waveplate.png, 2006. [Online; accessed 01-August-2023].

Research-Group Internship

Understanding the emitted green light of the Thomson Nd:YAG lasers

Philip Geißler

Physics Institute, University of Greifswald

4th of August, 2023